Cours	Cours	Cours	Cours
Définir un photon.	Qu'est-ce que l'absorption de photon ?	Qu'est-ce que l'émission de photon ?	Donner la formule de l'énergie d'un photon.
CHAPITRE 20	CHAPITRE 20	CHAPITRE 20	CHAPITRE 20
SAVOIR-FAIRE	Cours	Cours	Cours
Un photon 1 est associé à une radiation bleue et a une énergie E_1 . Un photon 2 est associé à une radiation rouge et a une énergie E_2 . Comparer E_1 et E_2 .	Définir l'effet photoélectrique.	Qu'est-ce que la fréquence de seuil ?	Qu'est-ce que le travail d'extraction ?
CHAPITRE 20	CHAPITRE 20	CHAPITRE 20	CHAPITRE 20
Cours	Cours	Cours	Cours
Quel est le lien entre travail d'extraction et fréquence de seuil ?	Effectuer le bilan énergétique lors de l'interaction photon-électron.	Définir une cellule photoélectrique	Définir le rendement d'une cellule photovoltaïque.
CHAPITRE 20	CHAPITRE 20	CHAPITRE 20	CHAPITRE 20
Cours	Cours	Cours	Cours
Expliquer pourquoi l'effet photoélectrique ne s'explique qu'avec la notion de photon.	Citer deux dispositifs qui exploitent l'interaction photon-matière.	Donner deux caractéristiques de l'effet photoélectrique.	Un électron est extrait par effet photoélectrique avec une vitesse non nulle si l'énergie du photon absorbé est
CHAPITRE 20	CHAPITRE 20	CHAPITRE 20	CHAPITRE 20

$E = h\nu = h\frac{c}{\lambda}$ • E l'énergie du photon en J; • h la constante de Planck $h = 6.63 \times 10^{-34} \mathrm{J\cdot s};$ • ν la fréquence de l'onde électromagnétique en Hz; • c la vitesse de la lumière en $\mathrm{m\cdot s^{-1}};$ • λ la longueur d'onde de l'onde électromagnétique en m.	Lorsqu'une entité chimique ou une molécule passe d'un certain état d'énergie à un état d'énergie inférieure, il émet un photon. Ce photon acquiert l'énergie correspondant à la différence des niveaux d'énergie initial et final.	L'absorption correspond au transfert d'énergie par un photon à destination d'une autre particule.	Un photon est une particule de masse nulle au repos et de charge électrique nulle, associée aux ondes électromagnétiques, se déplaçant, dans le vide, à la vitesse de la lumière : $c = 3{,}00 \times 10^8 \mathrm{m\cdot s^{-1}}.$
Ce travail correspond à l'énergie nécessaire pour extraire l'électron du solide auquel il appartient.	L'effet photoélectrique se produit si la fréquence ν du rayonnement électromagnétique est supérieure à une fréquence seuil notée ν_0 . Cette fréquence dépend seulement de la nature du matériau.	L'effet photoélectrique est un phénomène physique durant lequel un matériau, généralement métallique, émet des électrons lorsqu'il est exposé à la lumière (ou un rayonnement électromagnétique).	$E = h \frac{c}{\lambda}$ Or la radiation bleue a une longueur d'onde plus petite que la radiation rouge: $\lambda_1 < \lambda_2$. On a donc $E_1 > E_2$.
$\eta = \frac{P_{\text{utile}}}{P_{\text{reque}}} = \frac{P_{\text{élec}}}{P_{\text{lum}}} \qquad (1)$ • η le rendement sans unité; • P_{utile} la puissance utile (en sortie) en W; • P_{reque} la puissance reçue (en entrée) en W; • $P_{\text{élec}}$ la puissance électrique en W; • P_{lum} la puissance lumineuse en W;	Une cellule photoélectrique est un dispositif dont une des propriétés électriques (tension, résistance) est modifiée par absorption de photons.	$h\nu = W_e + E_c = W_e + \frac{1}{2}mv^2$	$W_e = h\nu_0$ avec $ \bullet \ W_e \text{le travail d'extraction en J;} $ $ \bullet \ h \text{ la constante de Planck;} $ $ \bullet \ \nu_0 \text{ la fréquence seuil du métal en Hz.} $
supérieure au travail ${ m d}$ 'extraction W_e .	L'émission d'électrons ne se produit qu'à partir d'une fréquence limite, appelée fréquence seuil, qui dépend du matériau étudié mais pas de l'intensité du rayonnement. Le nombre d'électrons émis est proportionnel à l'intensité du rayonnement.	On peut citer le spectrophotomètre et la cellule photovoltaïque.	En utilisant l'aspect ondulatoire, l'effet photoélectrique se produirait à partir d'une certaine intensité (l'énergie nécessaire pour extraire l'électron) et non à partir d'une certaine fréquence. Si l'énergie d'un photon est supérieure ou égale à $h\nu_0$, la lumière ou le rayonnement électromagnétique extrait un électron du matériau.