Cours	Cours	Cours	SAVOIR-FAIRE
Avant de mesurer une absorbance pourquoi faut-il régler le spectrophotomètre à une longueur d'onde précise ?	Citer la loi de Beer-Lambert en donnant une formule (avec unités) puis en faisant une phrase.	À quoi sert un spectrophotomètre ?	Comment s'écrit la loi de Kohlrausch pour une solution contenant uniquement des ions sodium et des ions chlorure ?
CHAPITRE 2	CHAPITRE 2	CHAPITRE 2	CHAPITRE 2
Cours	Cours	Cours	Cours
En quelle unité doit-on exprimer les concentrations dans la loi de Kohlrausch ?	La loi de Beer-Lambert est-elle toujours vérifiée ?	Une solution peut-elle contenir uniquement des anions ?	Qu'est-ce qu'un dosage par titrage ?
CHAPITRE 2	CHAPITRE 2	CHAPITRE 2	CHAPITRE 2
Cours	SAVOIR-FAIRE	Cours	Cours
Quel est le rôle des solutions étalons dans un dosage par étalonnage ?	Une fois la longueur d'onde choisie, quel autre réglage doit-on effectuer sur le spectrophotomètre ?	Quelle la couleur d'une espèce chimique éclairée par une lumière blanche ?	Quel objectif permet d'atteindre la spectroscopie infrarouge ?
CHAPITRE 2	CHAPITRE 2	CHAPITRE 2	CHAPITRE 2
Cours	Cours	Cours	Cours
Quelle est la formule (avec unités) de la conductance ?	Donner la loi de Kohlrausch dans le cas général (avec unités).	Donner la loi du gaz parfait (avec unités)	Donner la définition de la conductivité et sa formule dans le cas d'un courant entre deux plaques.
CHAPITRE 2	CHAPITRE 2	CHAPITRE 2	CHAPITRE 2

$\sigma = \lambda_{\mathrm{Na}^{+}} \times [\mathrm{Na}^{+}] + \lambda_{\mathrm{Cl}^{-}} \times [\mathrm{Cl}^{-}]$	Il permet de mesurer l'absorbance d'une solution.	$A = k \times C$ avec A l'absorbance sans unité, k le coefficient de proportionnalité en $L \cdot \text{mol}^{-1}$, et C la concentration en quantité de matière en $\text{mol} \cdot L^{-1}$. L'absorbance d'une solution (à une longueur d'onde précise) est proportionnelle à sa concentration.	L'absorbance d'une solution dépend de la longueur d'onde. Afin d'avoir des résultats significatifs on se place toujours à une longueur d'onde permettant une absorption maximale.
Il consiste à déterminer une concentration inconnue à partir d'une concentration connue en utilisant une réaction chimique totale et rapide.	Une solution étant électriquement neutre, ce n'est pas possible.	Si la solution est trop concentrée, les grandeurs A et C ne sont plus proportionnelles.	Les concentrations en quantité de matière s'expriment en mol·m ⁻³ au lieu de mol·L ⁻¹ .
La spectroscopie IR permet de repérer la présence de certaines liaisons et d'en déduire les groupes fonctionnels caractéristiques présents dans la molécule.	La couleur est la couleur complémentaire de la couleur absorbée.	Il faut faire le zéro c'est-à-dire mesurer l'absorbance du solvant (généralement l'eau distillée) utilisé dans les solutions. À la longueur d'onde choisie, on règle l'appareil pour avoir une absorbance nulle.	Elles permettent de tracer une droite d'étalonnage sur laquelle on pourra identifier, à partir de la mesure de la grandeur physique de la solution inconnue, la concentration de la solution inconnue.
La conductivité σ d'une solution traduit l'aptitude de cette solution à conduire le courant électrique. Elle s'exprime en siemens par mètre $\mathbf{S} \cdot \mathbf{m}^{-1}$. $\sigma = G \times \frac{L}{S}$ avec σ la conductivité en $\mathbf{S} \cdot \mathbf{m}^{-1}$, G la conductance en \mathbf{S} , L la distance entre les deux plaques, et S est la surface des plaques (en \mathbf{m}^2).	$P \times V = n \times R \times T$ avec P la pression en Pa, V en m ³ , n en mol, T en K, R est la constante des gaz parfaits $(R = 8,314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})$.	$\sigma = \sum_i \lambda_i \cdot [X_i]$ avec σ la conductivité en $\mathbf{S} \cdot \mathbf{m}^{-1}, \ \lambda_i$ la conductivité ionique molaire en $\mathbf{S} \cdot \mathbf{m}^2 \cdot \mathbf{mol}^{-1}$ qui dépend de l'ion et de la température et $[X_i]$ est la concentration en quantité de matière de l'espèce X_i en $\mathbf{mol} \cdot \mathbf{m}^{-3}$.	$G = \frac{1}{R} = \frac{I}{U}$ avec G en siemens (S), R en Ω , I en Λ et U en V .