Cours	Cours	SAVOIR-FAIRE	Cours
Définir un champ uniforme.	Définir la chute libre.	Quel référentiel est adapté à l'étude de la chute libre, du mouvement d'un satellite de la Terre et du mouvement d'une sonde voyageant d'une planète à l'autre ?	Donner la formule du poids et de la force électrique.
CHAPITRE 12	CHAPITRE 12	CHAPITRE 12	CHAPITRE 12
Cours	Cours	Cours	Savoir-faire
Donner la formule du champ électrique dans un condensateur plan.	Rappeler le théorème de l'énergie mécanique.	Rappeler le théorème de l'énergie cinétique.	Exprimer le travail $W_{AB}\left(\overrightarrow{F_e}\right)$ pour une particule de charge q évoluant dans un condensateur plan.
CHAPITRE 12	CHAPITRE 12	CHAPITRE 12	CHAPITRE 12
SAVOIR-FAIRE	Savoir-faire	Savoir-faire	SAVOIR-FAIRE
Établir l'expression du vecteur \overrightarrow{a} d'une particule de charge q dans un champ électrique \overrightarrow{E} uniforme.	Établir l'expression du vecteur \overrightarrow{d} d'un objet lors d'une chute libre dans un champ de pesanteur uniforme.	Écrire l'expression des équations horaires du mouvement d'un système, de centre de masse G , lancé depuis le point $G_0(x_0,y_0)$ dans le plan (xOy) avec une vitesse initiale $\overrightarrow{v_0}$ formant un angle α avec l'horizontale. On néglige l'action de l'air sur le système.	Écrire l'expression de la trajectoire pour un système, de centre de masse G , dont les équations horaires sont les suivantes: $\overrightarrow{OG} = \left\{ \begin{array}{l} x = v_0 \cos(\alpha)t \\ y = -\frac{1}{2}gt^2 + v_0 \sin(\alpha)t \end{array} \right.$
CHAPITRE 12	CHAPITRE 12	CHAPITRE 12	CHAPITRE 12
SAVOIR-FAIRE	Cours	Cours	Cours
Un solide assimilé à un point matériel et soumis à trois forces \overrightarrow{F}_1 , \overrightarrow{F}_2 et \overrightarrow{F}_3 est en équilibre si	Si deux objets sont lâchés simultanément dans le vide alors	Donner les expressions de l'énergie cinétique, l'énergie potentielle de pesanteur et de l'énergie mécanique.	Définir un accélérateur de particules linéaire.
CHAPITRE 12	CHAPITRE 12	CHAPITRE 12	CHAPITRE 12

$\overrightarrow{P} = m \times \overrightarrow{g} \approx m \times \mathcal{G} \frac{M_T}{(R_T + h)^2}$ $\overrightarrow{F}_e = q \overrightarrow{E}$	 Chute libre: référentiel terrestre; Satellite: référentiel géocentrique; Sonde: satellite héliocentrique. 	Un corps est en chute libre s'il n'est soumis qu'à son poids.	Un champ est uniforme s'il a même direction, même sens et même intensité en tout point de l'espace.
Dans un condensateur plan, le champ électrique est uniforme. La force est donc constante $\overrightarrow{F_e} = q\overrightarrow{E}$ donc conservative. Le travail peut s'exprimer selon: $W_{AB}\left(\overrightarrow{F_e}\right) = \overrightarrow{F_e} \cdot \overrightarrow{AB} = qE\ell$ où ℓ est la projection du vecteur \overrightarrow{AB} dans la direction du champ électrique \overrightarrow{E} .	La variation de l'énergie cinétique ΔE_c d'un objet au cours d'un déplacement d'un point A à un point B est égale à la somme des travaux de toutes les forces appliquées à l'objet au cours de son déplacement: $\Delta E_c = E_{c_f} - E_{c_i}$ $= \sum W_{AB} \left(\overrightarrow{F}\right)$	L'énergie mécanique du système décroît d'une quantité égale au travail des forces non conservatives durant le mouvement: $\Delta E_m(A \to B) \\ = E_m(B) - E_m(A) \\ = \sum W_{AB} \left(\overrightarrow{F}_{nc} \right) \\ \text{avec}$ • $\Delta E_m(A \to B)$ la variation d'énergie mécanique entre A et B en J, • $\sum W_{AB} \overrightarrow{F}_{nc}$ la somme des travaux des forces non conservatives en J.	$E = \frac{ U }{d}$ avec $\bullet \ E \ \text{l'intensit\'e} \ \text{du champ}$ électrique en $V \cdot m^{-1}$, $\bullet \ U \ \text{la valeur absolue de la tension aux bornes du condensateur en } V,$ $\bullet \ d \ \text{la distance interplaque en } m.$
Par substitution de la variable $t = \frac{x}{v_0 \cos(\alpha)}$ dans l'expression de $y(t)$, on obtient l'équation: $y = -\frac{1}{2}g(\frac{x}{v_0 \cos(\alpha)})^2 + v_0 \sin(\alpha)\frac{x}{v_0 \cos(\alpha)}$ et finalement $y = -\frac{1}{2}g\frac{x^2}{v_0^2 \cos^2(\alpha)} + x \tan(\alpha)$	D'après la flashcards sur la chute libre: $\overrightarrow{a} = \overrightarrow{g} \iff \overrightarrow{a} = \begin{cases} a_x = 0 \\ a_y = -s \end{cases}$ En intégrant deux fois, $\overrightarrow{v} = \begin{cases} v_x = v_{0_x} = v_0 \cos(\alpha) \\ v_y = -gt + v_{0_y} \\ = -gt + v_0 \sin(\alpha) \end{cases}$ $\overrightarrow{OG} = \begin{cases} x = v_0 \cos(\alpha)t + x_0 \\ y = -\frac{1}{2}gt^2 + v_0 \sin(\alpha)t + y_0 \end{cases}$	$m\overrightarrow{a} = \overrightarrow{P} = m\overrightarrow{g}$	Dans un champ électrique uniforme, on suppose qu'une particule de charge q n'est soumise qu'à l'action du champ électrique \overrightarrow{E} car le poids \overrightarrow{P} de la particule est négligeable devant la force électrique $\overrightarrow{F_e}$. D'après la deuxième loi de Newton, $m\overrightarrow{a} = \overrightarrow{F_e} = q\overrightarrow{E}$ donc $\overrightarrow{a} = \frac{q}{m}\overrightarrow{E}$
Dispositif permettant d'accélérer des particules chargées dans le but de produire des réactions avec la matière. Il est	$E_c = \frac{1}{2}mv^2$ $E_{pp} = mgy$	ils touchent le sol simultanément. En effet, dans le vide, et d'après la deuxième loi de Newton, $\overrightarrow{P} = m \overrightarrow{a} \iff m \overrightarrow{g} = m \overrightarrow{a}$	$\overrightarrow{F}_1 + \overrightarrow{F}_2 + \overrightarrow{F}_3 = \overrightarrow{0}$

souvent désigné par son acronyme LINAC (LINear ACcelerator).

$$E_c = \frac{1}{2}mv^2$$

$$E_{pp} = mgy$$

$$E_m = E_c + E_{pp}$$

$$\overrightarrow{P} = m \overrightarrow{a} \iff m \overrightarrow{g} = m \overrightarrow{a}$$

$$\iff \overrightarrow{g} = \overrightarrow{a}$$

La masse n'intervient donc pas dans les équations horaires du mouvement.