(2,5 points) Exercice 1: **Écriture conventionnelle des éléments** Compléter les tableaux suivants.

Élément	Symbole	Protons	Neutrons	AX
Oxygène	0	8	8	$^{16}_{8}\mathrm{O}$
Oxygène	O	8	10	$^{18}_{8}$ O
Krypton	Kr	36	48	$^{84}_{36}{ m Kr}$
Chlore	Cl	17	20	³⁷ ₁₇ Cl
Uranium	U	92	143	$^{235}_{92}\mathrm{U}$

(2,5 points) Exercice 2: Ions monoatomiques

Atome	Configuration électronique	Gaz noble proche	Nom et formule de l'ion	Configuration électronique
Hydrogène H	$1s^1$	Не	Hydronium H ⁺	pas d'électron
Sodium Na	$1s^22s^22p^63s^1$	Ne	Ion sodium Na ⁺	$1s^22s^22p^6$
Potassium K	$1s^22s^22p^63s^23p^64s^1$	Ar	Ion potassium K ⁺	$1s^22s^22p^63s^23p^6$
Calcium Ca	$1s^22s^22p^63s^23p^64s^2$	Ar	Ion calcium II Ca ²⁺	$1s^22s^22p^63s^23p^6$
Chlore Cl	$1s^22s^22p^63s^23p^5$	Ar	Ion chlorure Cl ⁻	$1s^22s^22p^63s^23p^6$

(8 points) Exercice 3: Composition atomique du CO₂

(a) (2 points) Montrer que le numéro atomique du carbone est : Z = 6.

Solution: On cherche Z, le nombre de protons de l'atome. La charge du noyau est dû au nombre de protons selon:

$$Q_{noyau} = Z \times q_{proton} \tag{1}$$

$$Q_{noyau} = Z \times e \tag{2}$$

$$\iff Z = \frac{Q_{noyau}}{e}$$
 (3)

$$= \frac{9.6 \times 10^{-19} \,\mathrm{C}}{1.60 \times 10^{-19} \,\mathrm{C}} \tag{4}$$

$$Z = 6 \tag{5}$$

Le numéro atomique du carbone est bien Z = 6.

(b) i. (1 point) Donner le symbole du noyau de carbone.

Solution: Sur le modèle ${}_Z^AX$, on a ${}_6^{12}C$.

ii. (1 point) Donner la composition de

l'atome de carbone (nombre de protons, neutrons, électrons). Justifier.

Solution: L'atome de carbone a donc 6 protons. L'atome étant électriquement neutre, il a le même nombre d'électrons soit 6 électrons. Enfin, N = A - Z = 12 - 6 = 6. L'atome a 6 neutrons.

iii. (2 points) Exprimer puis calculer la masse d'un atome de carbone.

Solution: La masse de l'atome de carbone se concentre en son noyau:

$$m(C) = A \times m_{\text{nucl\'eon}}$$
 (6)

$$= 12 \times 1,67 \times 10^{-27} \,\mathrm{kg} \qquad (7)$$

$$m(C) = 2,00 \times 10^{-26} \,\mathrm{kg}$$
 (8)

L'atome de carbone a pour masse $2,00 \times 10^{-26}$ kg.

(c) (2 points) Si le noyau d'un atome d'oxygène était représenté par une balle de golf de rayon r = 2,5 cm, jusqu'à quelle distance pourraient circuler les électrons de cet atome ? Justifier

DS - Devoir Surveillé 3 CHAPITRES 3 ET 4.

clairement votre démarche.

Solution: Calculons le rapport entre le rayon de la balle de golf, et ce qu'il représente dans la réalisté, le rayon du noyau de l'atome d'oxygène:

$$\frac{r}{R_{\text{noyau}}(O)} = \frac{2.5 \,\text{cm}}{3.0 \,\text{fm}} \tag{9}$$

$$=\frac{2,5\times10^{-2}\,\mathrm{m}}{3,0\times10^{-15}\,\mathrm{m}}\tag{10}$$

$$= 8.3 \times 10^{12} \tag{11}$$

Il y a donc une échelle de 8.3×10^{12} : on représente le noyau 8.3×10^{12} fois plus grand avec la balle de golf. Il faut faire de même avec la taille de l'atome.

Les électrons pourraient donc se situer autour du noyau jusqu'à une distance $R_{\text{atome}}(O) \times 8.3 \times 10^{12} = 60 \text{ pm} \times 8.3 \times 10^{12} = 60 \times 10^{-12} \text{ m} \times 8.3 \times 10^{12} \approx 5.0 \times 10^{2} \text{ m}$ soit 500 m.

(7 points) Exercice 4: Est-ce une bonne idée?

(a) (2 points) Donner la configuration électronique de l'atome d'oxygène et préciser quelle est la couche de valence. Combien de liaisons doit faire l'oxygène ? Montrer que le schéma de Lewis de l'oxygène est •Ō•

Solution: Configurations électroniques: ${}_8O$: $1s^22s^22p^4$. La couche de valence (numéro 2) a 6 électrons et a besoin de 2 électrons supplémentaires pour être saturée: l'oxygène fait donc 2 liaisons covalentes. Il reste 6-2=4 électrons à représenter avec 2 doublets non-liants. Le schéma de Lewis de l'atome d'oxygène est donc

•<u>O</u>•

(b) (1 point) Les formule de Lewis de l'azote et de l'hydrogène sont

Na· H·

En déduire le schéma de Lewis de la molécule d'hydroxyde de sodium.

Solution:

$$Na - \overline{O} - H$$

(c) (2 points) Donner les configurations électroniques des atomes ${}_{9}^{19}F$ et ${}_{7}^{14}N$ puis en déduire leur schéma de Lewis (justifier).

Solution: Configurations électroniques: ${}^{19}_{9}F$: $1s^22s^22p^5$. La couche de valence (numéro 2) a 7 électrons et a besoin d'un électron en plus pour être saturée: le fluor fait donc une liaison covalente. Il reste 7-1=6 électrons à représenter dans 3 doublets non-liants. Le schéma de Lewis de l'atome de fluor est donc

 \overline{F} •

 ${}^{14}N$: $1s^22s^22p^3$. La couche de valence (numéro 2) a 5 électrons de valences et a besoin de 3 électrons en plus pour être saturée: l'azote fait donc trois liaisons covalentes. Il reste 5-3=6 électrons à représenter dans 3 doublets non-liants. Le schéma de Lewis de l'atome d'azote est donc

(d) (2 points) En déduire le schéma de Lewis de la molécule de trifluorure d'azote ainsi que sa formule brute.

Solution: Schéma de Lewis:

Formule brute:

 NF_3