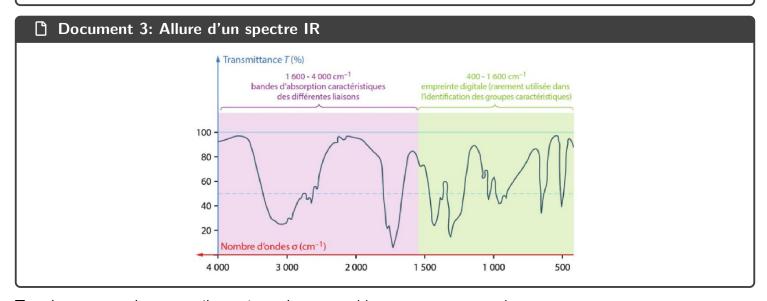
Spectroscopie Infrarouge (IR)		
⊘ Objectifs	Classe	
☐ Identification des groupes caractéristiques par spectroscopie infrarouge.	1 ^{ère} Spé	
Exploiter, à partir de valeurs de référence, un spectre d'absorption infrarouge.	• Durée	
	2 h	

Document 1: Principe de la spectroscopie infrarouge


Une molécule est constituée d'atomes reliés entre eux par des liaisons covalentes. Les atomes ont des mouvements d'oscillations, comme des ressorts, le long de la liaison (élongation) ou de part et d'autre de cette liaison (flexion). La fréquence de ces vibration dépend de la masse des atomes de la liaison et de la «raideur» du ressort, et donc du type de liaison. Ce mouvement va absorber une certaine énergie de la lumière incidente, qui correspond à celle transportée par des photons dans l'infrarouge de 2,5 μm à 25 μm . En mesurant le spectre d'absorption infrarouge d'une substance, on va avoir des informations sur le type de liaisons présentes, et donc la présence ou l'absence de certains groupes fonctionnels.

Document 2: Spectre d'absorption infrarouge

Un spectre d'absorption infrarouge représente le pourcentage d'intensité lumineuse transmise (la transmittance T) à travers l'échantillon en fonction du nombre d'onde σ en cm^{-1}

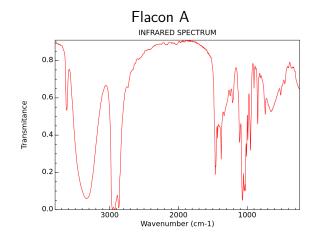
$$\sigma = \frac{1}{\lambda}$$

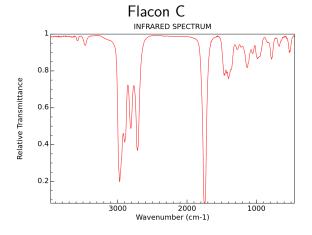
avec λ la longueur d'onde en cm. λ représente une fréquence à laquelle vibre la liaison. On gradue le graphique de droite à gauche.

Tous les spectres de ce travail sont issus de https://webbook.nist.gov/.

Document 4: Bandes d'absorption caractéristiques - Partie 1

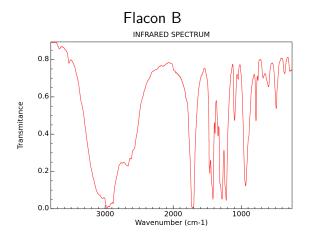
liaison		СН	0—Н	О—Н	ОН
		alcane	alcool	acide carboxylique	phase gazeuse
σ cm	en -1	2900 – 3100	3200 – 3600	2600 – 3200	vers 3600
Largeur de la bande		variable	large	large	fine
Intensité de la bande		moyenne à forte	forte	moyenne à forte	moyenne à forte
Exer	mple	0.8 0.6 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	### ETHANOL INFRARED SPECTRUM 0.8 0.8 0.6 0.2 0.2 Wavenumber (cm-1)	0.8 0.6 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.8 INFARED SPECTRUM 0.8 O.6 O.2 O.4 O.2 O.2 O.4 O.2 O.2 O.4 O.2 O.2 O.4 O.2 O.4 O.2 O.4 O.2 O.4 O.2 O.4 O.2 O.4 O.4 O.2 O.4 O.4 O.2 O.4

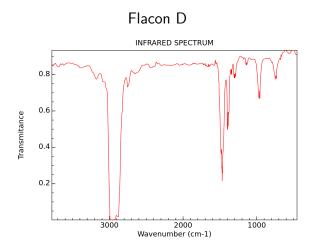

Document 5: Bandes d'absorption caractéristiques - Partie 2

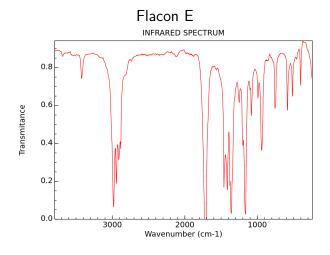

liaison	C == 0				
liaison	acide carboxylique	aldéhyde	cétone		
σ en cm $^{-1}$	1700 – 1730	1720 - 1740	1700 – 1720		
Largeur de la bande	fine	fine	fine		
Intensité de la bande	forte	forte	forte		
Exemple	0.8 0.8 0.6 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Acetaldehyde INFRARED SPECTRUM 0.8 0.6 0.7 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2.PROPANONE INFRARED SPECTRUM 0.8 4000 3000 2000 1000 Wavenumber (cm-1)		

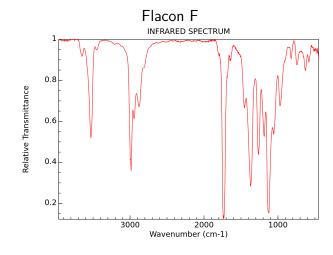
Un laborantin fait du rangement dans la réserve de produits. Hélas les étiquettes des flacons contenant les espèces suivantes (liquide si non précisé) ont disparu :

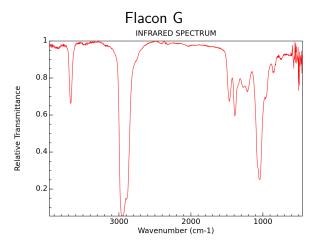
- butane
- butanal
- butan-1-ol
- butan-1-ol (phase gazeuse)
- acide butanoïque
- butanone
- 3-hydroxybutanone (gazeux)
- 3-hydroxy-3-méthylbutanone.


Il décide de réaliser les spectre IR de chacune de ces es-






pèces. Pour l'aider à associer chaque flacon à la bonne espèce chimique :


- 1. Écrire la formule semi-développée de chacune des molécule.
- 2. Pour chacun des spectre IR, numéroter chacune des bandes d'absorption et les décrire (position, largeur, intensité)
- 3. Les attribuer à une liaison à l'aide du document 3.
- 4. En déduire à quelle espèce chimique contient chacun des flacons.

