
Nom:	Prénom:	Classe:	Date:
INOITI	1 10110111	Classc	Datc

Image d'un objet par une lentille mince conver	gente
⊘ Objectifs	Classe
Exploiter les relations de conjugaison et de grandissement fournies pour déterminer la position et la taille de l'image d'un objet-plan réel.	1 ^{ère} Spé
Déterminer les caractéristiques de l'image d'un objet-plan réel formée par une lentille mince	• Durée
convergente. □ Réaliser une mise au point en modifiant soit la distance focale de la lentille convergente soit la géométrie du montage optique.	2 h

1 Images réelles et virtuelles

Document 1: Images réelles et virtuelles

- Une image fournie par un dispositif optique est réelle quand on peut la projeter sur un écran car tous les rayons lumineux convergent sur l'image.
- Une image virtuelle ne peut pas être projetée, il faut regarder à travers le dispositif pour l'observer (cas de la loupe par exemple).
- 1. Tracer l'image de l'objet AB dans les deux cas a et b suivant:

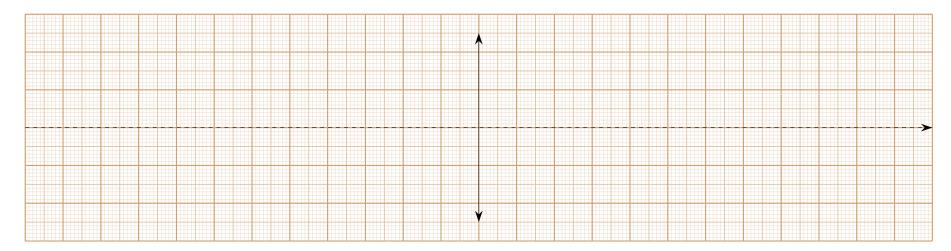
2 Création d'images réelles et virtuelles

que $C = \frac{1}{f}$	ia vergenc	e C (de la	ientille)	donnee en	dioptrie e	t determiner	la distance	focale f' .	On rappelle	9

Déroulement pour chacun des cas

Construction:

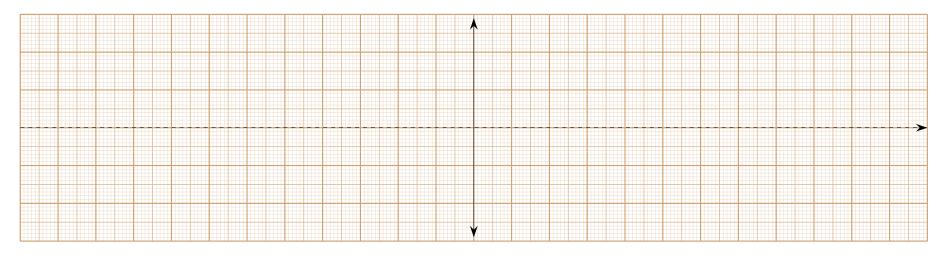
- 1. <u>∧</u> L'échelle sera la suivante: 0,5 cm sur le graphique représente 1 cm dans la réalité **horizontalement**. Verticalement 1 cm sur le graphique représente 1 cm dans la réalité.
- 2. Placer les points F' et F sur l'axe optique, à partir des données;
- 3. Placer les points A et B à partir des valeurs données et de manière à ce que l'objet AB soit perpendiculaire à l'axe optique;
- 4. Tracer les 3 rayons particuliers;
- 5. Faire apparaître le point B' à l'intersection des 3 rayons tracés, et le point A' sur l'axe de manière à ce que A'B' soit perpendiculaire à l'axe optique;
- 6. Mesurer les différentes longueurs de manière à compléter le tableau;
- 7. Indiquer si l'image est droite ou renversée par rapport à l'objet (sens);
- 8. Indiquer si l'image est plus grande ou plus petite que l'objet (taille);
- 9. Indiquer si l'image est réelle ou virtuelle (nature).


Expérience:

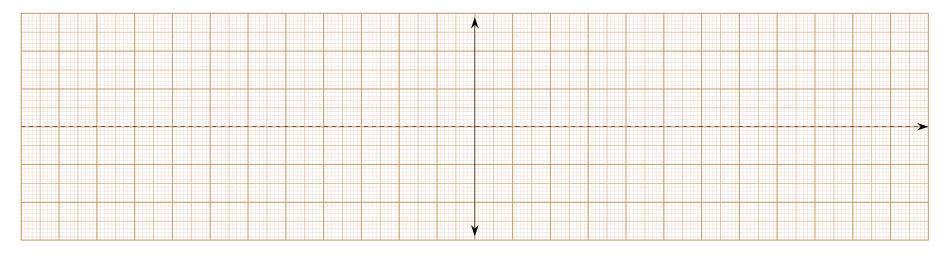
- 1. Matériel mis à disposition:
 - Banc optique gradué en millimètre (mm);
 - Source de lumière et son alimentation (générateur réglé sur 12 V);
 - Un objet (lettre F), une lentille convergente de vergence indiquée en dioptrie, un écran;
- 2. À partir de la valeur de la vergence C de la lentille mise à disposition, déterminer la valeur de sa distance focale f' par le calcul, donner un résultat en mètre puis en millimètre.
- 3. Déplacer la lentille de manière à ce que la position de l'objet corresponde au cas traité;
- 4. Déplacer l'écran de manière à pouvoir observer une image nette. La position de l'écran obtenue correspondant au point A', noter la valeur OA' obtenue.
- 5. Les observations faites sont-elles cohérentes par rapport aux valeurs théoriques (obtenues par construction géométrique) ? Détailler.

Remarque: Attention, l'objet AB utilisé est la lettre F, ne pas le confondre avec le point F (foyer objet).

TP - Image d'un objet par une lentille mince convergente


- 3. Déroulement des cas:
 - (a) Cas où OA = 2f'Construction:

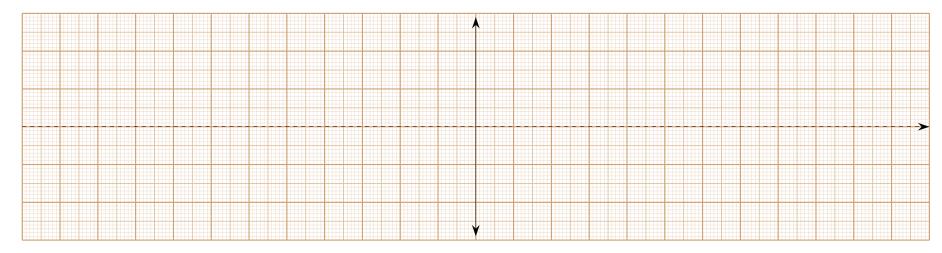
$f' = \overline{OF'} =$	$\overline{OF} =$		Image	
$\overline{OA} = -10 \mathrm{cm}$	$\overline{OA'} =$	Sens:	Taille:	Nature:
$\overline{AB} = 1.6 \mathrm{cm}$	$\overline{A'B'} =$			


TP - Image d'un objet par une lentille mince convergente

(b) **Cas où** 2f' > OA > f'Construction:

$f' = \overline{OF'} =$	$\overline{OF} =$		Image	
$\overline{OA} = -8.0 \mathrm{cm}$	$\overline{OA'} =$	Sens:	Taille:	Nature:
$\overline{AB} = 1.6 \mathrm{cm}$	$\overline{A'B'} =$			

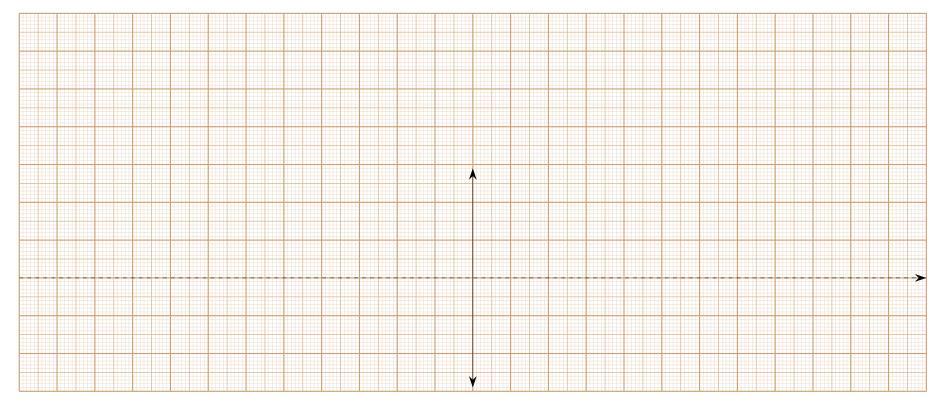
TP - Image d'un objet par une lentille mince convergente



$f' = \overline{OF'} =$	$\overline{OF} =$		Image	
$\overline{OA} = -15,0 \mathrm{cm}$	$\overline{OA'} =$	Sens:	Taille:	Nature:
$\overline{AB} = 1.6 \mathrm{cm}$	$\overline{A'B'} =$			

⇔ Physique/Chimie -

 ★ 2025


(d) Cas où OA = f'Construction:

$f' = \overline{OF'} =$	$\overline{OF} =$		Image	
$\overline{OA} = -5.0 \mathrm{cm}$	$\overline{OA'} =$	Sens:	Taille:	Nature:
$\overline{AB} = 1.6 \mathrm{cm}$	$\overline{A'B'} =$			

TP - Image d'un objet par une lentille mince convergente

(e) Cas où OA < f'Construction:

$f' = \overline{OF'} =$	$\overline{OF} =$		Image	
$\overline{OA} = -2.0 \mathrm{cm}$	$\overline{OA'} =$	Sens:	Taille:	Nature:
$\overline{AB} = 1.6 \mathrm{cm}$	$\overline{A'B'} =$			

3 Pour aller plus loin

Relation de conjugaison

La formule de conjugaison donne une relation entre la distance lentille objet OA, la position lentille image OA' et la focale f' de cette lentille:

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'} \tag{1}$$

Les trois longueurs doivent être exprimées dans la même unité.

Grandissement

Le grandissement γ se calcule à partir des coordonnées des points objets et images par la formule :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}} \tag{2}$$

- 4. Pour chacun des cas vus précédemment, on réalisera les calculs à partir des relations précédentes:
 - Rappeler les valeurs de OF', OA et AB;
 - À partir des valeurs de OA et f' données, utiliser la relation de conjugaison et calculer OA'. Vérifier la cohérence du résultat obtenu par rapport à ceux obtenus par construction;

• À partir de la relation du grandissement, calculer la valeur de γ , ainsi que la taille de l'image $\overline{A'B'}$. Vérifier

	la	C	oł	ıé	re	no	ce	C	le	S	r	és	u	lt	at	ts	; (bb	ot	e	nı	u:	S	p	a	r	r	a	p	p	0	rt	: ;	aı	J	S	e	n	S	e	t	à	I	a	n	a	tı	ur	e	C	le		'i	m	a	ge	9	ol	bt	e	n	u	e	p	a	r	С	0	ns	st	:rı	JC	ct	ic	n	١.
 			٠.	•					•						٠														•																											•															•				-	