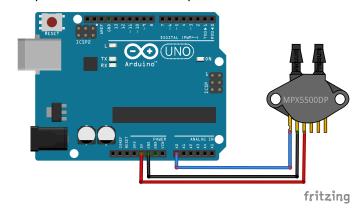
Nom:	Prénom:	Classe:	Date:
	Découvrir la	loi de Mariotte	
	Objectifs		♣ Classe
	nportement d'un gaz : loi de Mariotte. e <i>Mariotte, par exemple en utilisant un dis</i>	enositif comportant un microcontrôleur	1 ^{ère} Spé
rester la lor de	e Manotte, par exemple en utilisant un dis	positii comportant un inicrocontroleur.	O Durée
			2 h

X Sur la paillasse

- un microcontroleur arduino uno connecté à l'ordinateur;
- un capteur de pression MPX5500DP;
- trois câbles de connection mâle/femelle;
- une seringue de 60 mL et deux tuyaux aux diamètres adaptés à la seringue et au capteur. Ces tuyaux sont connectés de manière imperméable.


Document 1: Capteur de pression MPX5500DP

Pour mesurer la pression, on utilise un capteur de pression MPX5500DP dont le schéma de câblage est fourni ci-dessous.

Il est alimenté par une tension de 5V à partir de la broche correspondante sur la carte Arduino. Lorsqu'on regarde le capteur du côté où l'on peut lire sa référence, le tuyau de mesure de la pression est celui en haut à droite.

Le capteur fournit une réponse en tension en fonction de la pression qui lui est appliquée. La valeur de la tension sera lue sur la broche A_0 .

Pour obtenir un affichage de la pression, il faudra réaliser un étalonnage du capteur en début de manipulation.

Document 2: Étalonnage du capteur de pression

La carte Arduino mesure une tension U aux bornes du capteur MPX5500DP qui varie entre 0V et 5V selon la pression P régnant au niveau du tuyau de mesure. La pression P mesurée est reliée à la tension P mesurée par la droite d'étalonnage :

$$P = 1100 \times U + k \tag{1}$$

où k est une constante à étalonner.

La constante k doit être réglée par l'utilisateur de sorte que la pression mesurée par le capteur, lorsque celui-ci est à l'air libre, soit bien d'environ $1013\,\mathrm{hPa}$.

¹TP basé en partie sur le travail de M. Briant.

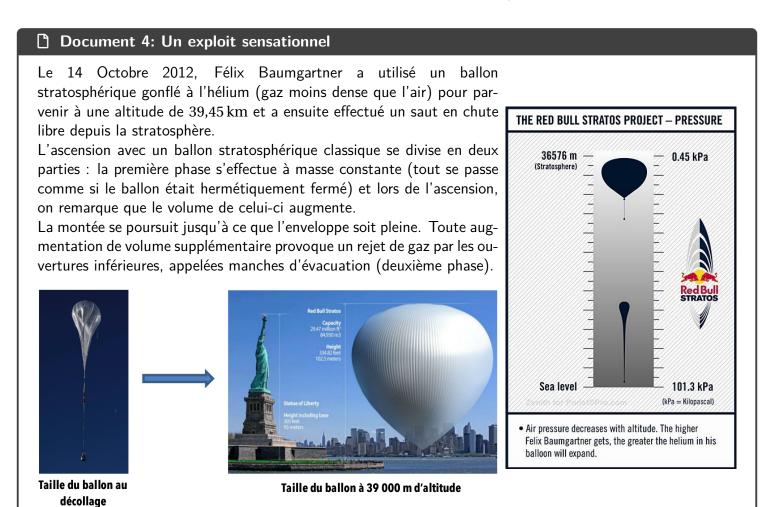
Document 3: Mesure de la pression

On donne ci-contre le script Arduino que vous trouverez en cliquant sur le lien ci-dessous. Vous téléverserez ce programme sur la carte Arduino. Tel quel, le script permet juste d'afficher la tension lue aux bornes du capteur. À vous de modifier les lignes 16, 17 et 18 afin d'afficher la pression en hPa. Ensuite, il vous faudra modifier la ligne 15 de sorte à étalonner le capteur.


```
1 const int captPress = A0;
2 int valeur;
3 float tension;
4 float pression;
6 void setup(){
    Serial.begin (9600);
    pinMode(captPress, INPUT);
8
9 }
10
11 void loop() {
    valeur = analogRead(captPress);
13
    tension = valeur*5.0/1023.0;
14
    pression = 1100 * tension + 0;
15
    Serial.print("tension_mesurée:..");
16
17
    Serial.print(tension);
    Serial.print("_V\n");
18
    delay(1000);
19
20 }
```

1 Loi de Boyle-Mariotte

- 1. Travail à réaliser pour établir et démontrer expérimentalement la loi de Mariotte¹:
 - (a) Vous réaliserez les branchements du capteur de pression sur le microcontrôleur ;
 - (b) Vous téléchargerez le script arduino mesurePressionvEleve.ino et vous le compléterez ;
 - (c) Vous étalonnerez le capteur de pression en complétant le script mesurePressionvEleve.ino;
 - (d) Vous relierez le tuyau de la seringue au tuyau de mesure du capteur de pression;
 - (e) Vous réglerez le piston de la seringue sur la graduation 60 mL, tuyau déconnecté du capteur de pression;
 - (f) Puis, tuyau relié au capteur de pression, vous effectuerez les mesures de pression suivantes:


Volume V en mL	60	58	56	54	52	48	44	40	36	32
Pression P en hPa										

(g) Se rendre sur *Capytale* pour effectuer le post-traitement des données à l'aide du programme *python*. Compléter le programme (lignes 5, 9 et 33) et tracer la courbe P = f(V), V = f(P) et P = f(1/V). https://capytale2.ac-paris.fr/web/c/d21d-6820137

2.	Que peut-	ue peut-on en conclure quant au produit $P \times V$?		
4	Appel 1	Appeler le professeur pour vérification.		
_	дррсі 1	Appeier le professeur pour vernication.		
		clusion sur le produit $P \times V$ est-elle toujours vérifiée ?		

2 Application au vol ascensionnel de Félix Baumgartner

4. Lors de la première phase de l'ascension du ballon stratosphérique, le nombre de molécules d'hélium à l'intérieur du ballon varie-t-il ou non ? Justifiez.

5.	Le document ci-dessus montre l'évolution de la pression (pressure) et du volume du ballon au cours de l'ascension. Comment évolue le volume du ballon au cours de l'ascension ? Comment l'expliquer ?
6.	Comment évolue la pression à l'intérieur du ballon au cours de l'ascension ?
7.	Pourquoi les ballons sondes météorologiques finissent par éclater à haute altitude tandis que le ballon stratosphérique de Félix Baumgartner n'éclate jamais ?
8.	Au décollage, le ballon utilisé par Félix Baumgartner était gonflé par $5100\mathrm{m}^3$ d'hélium. Ce volume était suffisant pour emporter Félix, son équipement et sa capsule de 3 tonnes. Déterminez le volume du ballon lorsque Félix atteint l'altitude de $36576\mathrm{km}$.
9.	En faisant l'hypothèse que le ballon a la forme d'une sphère parfaite, calculer le diamètre du ballon à 36576 km et comparer son diamètre à la hauteur de la statue de la Liberté. L'estimation du volume est-elle cohérente ? Comment expliquer la différence de taille ?