DS CHAPITRES 1 ET 2.

Correction DS 2 - Classe de 1ère Spé PC

(4 points) Problème 1 : Éviter les crampes

1. (1 point) Calculer la masse molaire du bicarbonate de sodium.

Solution:
$$M(\text{NaHCO}_3) = M(Na) + M(H) + M(C) + 3M(O) = 23,0 + 1,0 + 12,0 + 3 \times 16,0 = 84,0 \text{ g} \cdot \text{mol}^{-1}$$

2. (1 point) Calculer la concentration en masse de la solution obtenue.

Solution: Calculons la concentration en masse :
$$C_m = \frac{m}{V} = \frac{10 \, \mathrm{g}}{1.0 \, \mathrm{L}} = 10 \, \mathrm{g} \cdot \mathrm{L}^{-1}$$

3. (2 points) Calculer la concentration en quantité de matière à partir des données de l'énoncé et de la masse molaire du bicarbonate de sodium, en combinant deux formules.

Solution: Calculons la concentration en quantité de matière : $C = \frac{n}{V} = \frac{\frac{m}{M}}{V} = \frac{m}{M \times V} = \frac{10\,\mathrm{g}}{84.0\,\mathrm{g} \cdot \mathrm{mol}^{-1} \times 1.0\,\mathrm{L}} = 0.12\,\mathrm{mol} \cdot \mathrm{L}^{-1}$.

(4 points) Problème 2 : **Réactions d'oxydoréduction**

1. Réaction entre le diiode $I_{2(aq)}$ et le dioxyde de soufre $SO_{2(aq)}$.

Solution:

$$I_{2(aq)} + 2 e^{-} = 2 I_{(aq)}^{-}$$

$$SO_{2(aq)} + 2 H_{2}O = SO_{4}^{2-}_{(aq)} + 4 H^{+} + 2 e^{-}$$

$$I_{2(aq)} + SO_{2(aq)} + 2 H_{2}O = 2 I_{(aq)}^{-} + SO_{4}^{2-}_{(aq)} + 4 H^{+}$$

 $I_{2(aq)}$ est réduit, $SO_{2(aq)}$ est oxydé.

2. Réaction entre les ions nitrates $NO_3^-_{(aq)}$ et le zinc métallique $Zn_{(s)}$.

Solution:

$$2 \times \left(NO_{3^{-}(aq)}^{-} + 4 H^{+} + 3 e^{-} = NO_{(g)} + 2 H_{2}O\right)$$

$$3 \times \left(Zn_{(s)} = Zn^{2+}_{(aq)} + 2 e^{-}\right)$$

$$3 Zn_{(s)} + 2 NO_{3^{-}(aq)}^{-} + 8 H^{+} = 3 Zn^{2+}_{(aq)}^{-} + 2 NO_{(g)}^{-} + 4 H_{2}O$$

 NO_3^- _(aq) est réduit, $Zn_{(s)}$ est oxydé.

3. Réaction entre le dibrome $Br_{2(aq)}$ et les ions thiosulfates $S_2O_3^{2-}$ (aq).

Solution:

$$Br_{2(aq)} + 2e^{-} = 2Br^{-}_{(aq)}$$

$$2S_{2}O_{3}^{2-}_{(aq)} = S_{4}O_{6}^{2-}_{(aq)} + 2e^{-}$$

$$Br_{2(aq)} + 2S_{2}O_{3}^{2-}_{(aq)} = 2Br^{-}_{(aq)} + S_{4}O_{6}^{2-}_{(aq)}$$

 $Br_{2(aq)}$ est réduit, $S_2O_3^{2-}$ (aq) est oxydé.

4. Réaction entre le nickel $Ni_{(s)}$ et les ions cadmium $Cd^{2+}_{(aq)}$.

Solution:

$$Ni_{(s)} = Ni^{2+}_{(aq)} + 2e^{-}$$

$$Cd^{2+}_{(aq)} + 2e^{-} = Cd_{(s)}$$

$$Ni_{(s)} + Cd^{2+}_{(aq)} = Ni^{2+}_{(aq)} + Cd_{(s)}$$

Cd²⁺_(aq) est réduit, Ni_(s) est oxydé.

(13 points) Problème 3 : Recyclage d'une solution de bouillie bordelaise

1. (1 point) Déterminer la couleur de l'espèce ionique Cu²⁺_(aq) en solution aqueuse. Justifier.

Solution: La couleur d'une substance correspond à la composition des lumières qu'elle n'absorbe pas. Le spectre d'absorbance indique que le sulfate de cuivre absorbe sur des longueurs d'ondes supérieures à 600 nm, soit à partir du jaune-orangé, jusqu'au rouge. L'espèce ionique aura donc la couleur complémentaire correspondante, diamétralement opposée sur le cercle chromatique : le cyan.

On souhaite déterminer la concentration en quantité de matière d'ions cuivre $Cu^{2+}_{(aq)}$ de la solution de bouillie bordelaise S, par un dosage spectrophotométrique. On réalise pour cela une gamme étalon et des mesures d'absorbance à la longueur d'onde 810 nm.

2. (2 points) Expliquer en quelques lignes le principe de cette méthode de dosage.

Solution: La loi de Beer-Lambert indique que l'absorbance d'une solution est proportionnelle à sa concentration en espèce colorée, ceci n'étant valable que pour des concentrations suffisamment faibles. En mesurant l'absorbance de cette espèce sur des solutions étalons de concentration connue à la longueur d'onde λ_{max} à laquelle elle absorbe le plus, on va construire une droite d'étalonnage qui nous permettra de déterminer la concentration dans un échantillon à tester.

3. (2 points) Recopier et compléter le tableau ci-dessous en explicitant le calcul pour la solution S_2 .

Solution:					
Solution fille S_i	S_1	S_2	S_3	S_4	S_5
Concentration en quantité de matière C_i (mol·L ⁻¹)	0,020	0,016	0,012	0,008	0,004
Volume V_0 de solution S_0 à prélever (mL)	5,0	4,0	3,0	2	1

Calcul pour la solution S_2 : on effectue une dilution, dont la concentration mère est $C_0 = 0.040 \,\text{mol} \cdot \text{L}^{-1}$, la concentration fille $C_2 = 0.016 \,\text{mol} \cdot \text{L}^{-1}$ et le volume fille est $V_f = 10.0 \,\text{mL}$. On cherche le volume mère V_0 à prélever pour obtenir la solution S_2 .

Or, $C_0 \times V_0 = C_2 \times V_f$ (la quantité de matière en soluté prélevée dans la solution mère est égale à la quantité de matière en soluté présente dans la solution fille) donc :

$$V_0 = \frac{C_2 \times V_f}{C_0} = \frac{0.016 \,\text{mol} \cdot \text{L}^{-1} \times 10.0 \,\text{mL}}{0.040 \,\text{mol} \cdot \text{L}^{-1}} = 4.0 \,\text{mL}$$
 (1)

Il faut prélever 4,0 mL de solution mère pour réaliser la solution S_2 .

4. (2 points) Après avoir rappelé l'expression de la loi de Beer-Lambert en indiquant le nom des grandeurs et les unités associées, déterminer si les résultats expérimentaux obtenus sont en accord avec cette loi.

Solution: Comme indiqué dans la question 2, il y a une relation de proportionnalité entre l'absorbance A (sans unité) et la concentration C (mol·L⁻¹). On a donc une relation de la forme $A = k \cdot C$ avec k, le coefficient de proportionnalité (L·mol⁻¹). Dans notre cas, on voit que les points de mesures sont correctement alignés sur une droite passant par l'origine du repère. Ce qui montre que la relation entre A et C est modélisée par une fonction linéaire. La relation de proportionnalité entre concentration et absorbance est validée et le coefficient k est indiqué près de la droite $k = 13.9 \text{L} \cdot \text{mol}^{-1}$.

5. (2 points) Détailler le protocole expérimental de préparation de $100\,\mathrm{mL}$ de la solution S'. La verrerie mise à disposition est :

• fiole jaugée: 100 mL et 200 mL,

- pipettes jaugées : 5 mL, 10 mL, 50 mL et 100 mL,
- béchers: 50 mL et 100 mL,

- éprouvettes graduées: 10 mL, 50 mL et 100 mL,
- pissette d'eau distillée,
- pipette en plastique souple.

Solution: On effectue une dilution, en passant d'une concentration mère C inconnue à une solution fille 20 fois moins concentrée. Le facteur de dilution est donc de 20. Or $F = \frac{V_f}{V_m}$ avec F = 20 et $V_f = 100\,\mathrm{mL}$ donc $V_m = \frac{V_f}{F} = \frac{100\,\mathrm{mL}}{20} = 5,0\,\mathrm{mL}$. Il faudra prélever 5,0 mL de solution mère. Le protocole sera le suivant :

- 1. Dans un becher de 50 mL, verser une petite quantité de solution $S \approx 10$ mL),
- 2. À l'aide d'une pipette jaugée prélever 5 mL de solution S,
- 3. Verser la solution mère dans une fiole jaugée de 100 mL,
- 4. Compléter aux 3/4 avec de l'eau distillée, boucher et agiter,
- 5. Compléter en eau distillée jusqu'au trait de jauge (on fera attention à la position du ménisque),
- 6. Boucher et homogénéiser.
- 6. (2 points) Déterminer si le jardinier peut rejeter son excédent de solution *S* à l'évier ou s'il doit le faire recycler.

Solution: La limite de rejet est, d'après les données, une concentration en masse d'ions cuivre Cu^{2+} , $C_m = 0.5 \,\mathrm{mg} \cdot L^{-1}$. L'absorbance mesurée de la solution S' est A' = 0.120, on en déduit sa concentration en quantité de matière :

$$A = kC'$$
 donc $C' = \frac{A}{k} = \frac{0,120}{13.9} = 8,63 \times 10^{-3} \,\text{mol} \cdot \text{L}^{-1}$ (2)

La solution S est 20 fois plus concentrée, on a donc $C = 20 \times C' = 20 \times 8,63 \times 10^{-3} \,\mathrm{mol \cdot L^{-1}} = 0,173 \,\mathrm{mol \cdot L^{-1}}$. La relation entre la concentration en quantité de matière C et concentration en masse C_m est $C_m = C \times M$ avec M, la masse molaire. On obtient donc finalement la concentration en masse $C_m = C.M(Cu) = 0,173 \,\mathrm{mol \cdot L^{-1}} \times 63,5 \,\mathrm{g \cdot mol^{-1}} = 11,0 \,\mathrm{g \cdot L^{-1}}$. On se trouve une valeur très au-dessus de la concentration maximale acceptable pour un rejet dans à l'évier. Il conviendra donc de faire recycler l'excédent de solution S.

7. (2 points) Déterminer la masse m d'hydroxyde de sodium NaOH_(s) à ajouter à cette solution pour éliminer totalement les ions cuivre sans pour autant que les ions hydroxyde ne soient en excès.

Solution: Commençons par déterminer la quantité d'ions cuivre présente dans la solution : $n(Cu^{2+}) = C_T \times V = 0.22 \,\text{mol} \cdot L^{-1} \times 500 \,\text{mL} = 0.22 \,\text{mol} \cdot L^{-1} \times 0.500 \,\text{L} = 0.11 \,\text{mol}$.

L'équation de la réaction indique qu'une mole d'ions Cu^{2+} réagit avec 2 moles d'ions hydroxyde OH^- . Il sera donc nécessaire d'apporter $n(OH^-) = 2 \times n(Cu^{2+}) = 0,22$ mol afin de respecter les proportions stœchiométriques permettant d'éliminer tous les ions cuivre Cu^{2+} sans pour autant laisser d'ions hydroxyde OH^- en excès.

On peut maintenant calculer la masse d'hydroxyde de sodium à ajouter à la solution : $m(NaOH) = n(NaOH) \times M(NaOH) = 0.22 \,\text{mol} \times 40.0 \,\text{g} \cdot \text{mol}^{-1} = 8.8 \,\text{g}.$

Il faudra ajouter 8,8 g de soude à la solution pour neutraliser les ions cuivre II.